Carnegie Mellon University

Helnz

95-865 Unstructured Data Analytics

Recitation: More on minibatch
gradient descent, RNNs, and
transtformers

Slides by George H. Chen & Shahriar Noroozizadeh

Learning a Deep Net

Suppose the neural network has a single real number parameter w

$Loss L The skier wants to get to the lowest point
x The skier should move rightward (positive direction)
2w

AL The derivative % at the skier's position is negative

tangent line

|
|
|
|
|
|
. initial guess of
|

~good parameter

n general: the skier should move in opposite direction of derivative

n higher dimensions, this is called gradient descent
(derivative in higher dimensions: gradient)

\4

Learning a Deep Net

Suppose the neural network has a single real number parameter w

Aloss L

NP,
\

\4

Learning a Deep Net

Suppose the neural network has a single real number parameter w

Aloss L

.

\4

Learning a Deep Net

Suppose the neural network has a single real number parameter w

Aloss L

\"‘:\

\4

Learning a Deep Net

Suppose the neural network has a single real number parameter w

Aloss L

In general: not obvious what error landscape looks like!
= we wouldn't know there’s a better solution beyond the hill

Lookahead) are variants

Popular optimizers @Ctory!)
(e.g., Adam, RMSProp, R

ot gradient descent

— essesssssded —»
|
iver | ol Local minimum
Thle optimizer is the skier! Better
. . . . solution
In very high-dimensional parameter spaces, local minima can
°

_be rare but we might get stuck in parts of the error landscape

\4

where the slope downwards is very gradual/not steep

Handwritten Digit Recognition

Overall loss:

- 21: Lt (X)), 1)

Training label: 6

v

f1 (i) fo (f1(Xi))

> > >‘ Loss > error

L L(12(1(xi)), yi)

28x28 image ||
Xi f1 f2

1 n _
Gradient: 8,7 Z gg(ﬁ (X7)), ¥i)

Automatic differentiation is crucial in learning deep nets!

All parameters: ¢

Careful derivative chain rule calculation: back-propagation

Gradient Descent

Training ‘\ Training |l Training |l Training M Training | Training j
| example [l example [l example [} example il example (Il example |
1 | 2 | 3 | 4 5 - n
loss 1 loss 2 loss 3 loss 4 loss5 .-+ lossn
| l |
We have to compute lots of average loss Computing gradients using
gradients to help the l all the training data seems

optimizer know where to go! really expensive!

compute gradient
& move optimizer

Stochastic Gradient Descent (SGD)

Training ‘\ Training |l Training |l Training M Training | Training j
| example [l example [l example [} example il example (Il example |
1 | 2 | 3 | 4 5 - n
loss 1 loss 2 loss 3 loss 4 loss5 .-+ lossn

'

compute gradient

& move optimizer

SGD: compute gradient using only 1 training example at a time
(can think of this gradient as a noisy approximation of the “full” gradient)

Stochastic Gradient Descent (SGD)

Training ‘\ Training |l Training |l Training M Training | Training j
| example [l example [l example [} example il example (Il example |
1 | 2 | 3 | 4 5 - n
loss 1 loss 2 loss 3 loss 4 loss5 .-+ lossn

'

compute gradient

& move optimizer

SGD: compute gradient using only 1 training example at a time
(can think of this gradient as a noisy approximation of the “full” gradient)

Stochastic Gradient Descent (SGD)

Training ‘\ Training |l Training |l Training M Training | Training j
| example [l example [l example [} example il example (Il example |
1 | 2 | 3 | 4 5 - n
loss 1 loss 2 loss 3 loss 4 loss5 .-+ lossn

'

compute gradient

& move optimizer

SGD: compute gradient using only 1 training example at a time
(can think of this gradient as a noisy approximation of the “full” gradient)

Stochastic Gradient Descent (SGD)

Training ‘\ Training |l Training |l Training M Training | Training j
| example [l example [l example [} example il example (Il example |
1 | 2 | 3 | 4 5 - n
loss 1 loss 2 loss 3 loss 4 loss5 .-+ lossn

'

compute gradient

& move optimizer

SGD: compute gradient using only 1 training example at a time
(can think of this gradient as a noisy approximation of the “full” gradient)

Stochastic Gradient Descent (SGD)

Training ‘\ Training |l Training |l Training M Training | Training j
| example [l example [l example [} example il example (Il example |
1 | 2 | 3 | 4 5 - n
loss 1 loss 2 loss 3 loss 4 loss5 .-+ lossn

'

compute gradient

& move optimizer

SGD: compute gradient using only 1 training example at a time
(can think of this gradient as a noisy approximation of the “full” gradient)

Stochastic Gradient Descent (SGD)

Training ‘\ Training |l Training |l Training M Training | Training j
| example [l example [l example [} example il example (Il example |
1 | 2 | 3 | 4 5 - n
loss 1 loss 2 loss 3 loss 4 loss5 .-+ lossn

'

compute gradient

& move optimizer

SGD: compute gradient using only 1 training example at a time
(can think of this gradient as a noisy approximation of the “full” gradient)

Stochastic Gradient Descent (SGD)

Training ‘\ Training |l Training |l Training M Training | Training j
| example [l example [l example [} example il example (Il example |
1 | 2 | 3 | 4 5 - n
loss 1 loss 2 loss 3 loss 4 loss5 .-+ lossn
compute gradient An epoch refers to 1 full pass through all
& move optimizer the training data

SGD: compute gradient using only 1 training example at a time
(can think of this gradient as a noisy approximation of the “full” gradient)

Minibatch Gradient Descent

Training [@ Training [@ Training [@ Training (@ Training | Training
example [l example |l example |l example [l example [l example |
| | | 4 5 n

loss 1 loss 2 loss 3 loss 4 loss5 .-+ lossn

!

average loss

'

compute gradient
& move optimizer

Minibatch Gradient Descent

Training [@ Training [@ Training [@ Training (@ Training | Training

example [l example |l example |l example [l example [l example |

o | n
loss 1 loss 2 loss 3 loss 4 loss5 .-+ lossn

!

average loss

Batch size: how many l

i compute gradient
training examples we s
consider at a time & move optimizer

(in this example: 2)

Best optimizer? Best learning rate? Best
of epochs? Best batch size?
Active area of research

Depends on problem, data, hardware, etc

Example: even with a GPU, you can get slow learning (slower than CPU!)
if you choose # epochs/batch size poorly!!!

UDA_pytorch_utils.py

A look at UDA pytorch classifier fit

A special kind of RNN: an “LSTM”

(Flashback) Vanilla ReLU RNN

current state = np.zeros(num _nodes)

outputs = []1%* — Ingeneral: there is an output at every time step

for input 1n 1nput sequence:

linear = np.dot(input, W.T) + Db \
+ np.dot(current state, U.T)

output = np.maximum(®, linear) # RelLU

outputs.append(output) «

current _state = output

For simplicity, in today’s lecture, we only use the very last time step’s output

> » output prediction

Time series RNN layer

> » output prediction O

> » output prediction 1

> » output prediction 2

> » outputt— 1

Vanilla RNN tends to
forget things quickly

> — » outputt

outputs|[t]

= np.maximum(np.dot (input sequencel[t], W.T)
+ np.dot(outputs[t-1], U.T)
+ b, 0)

> » outputt+ 1

Add explicit long-term
memory!

> —7 » outputt— 1

/ But need some way to
.3 update long-term
memory!

> —7 > OUtpUt t

> —7 » outputt+ 1

Long-term memory

/

Add explicit long-term
memory!

87

» outputt— 1

But need some way to
update long-term
memory!

» outputt

Time t

Add explicit long-term
memory!

— » outputt— 1

But need some way to
update long-term
memory!

— » outputt

Time t

Long-term memory

Add explicit long-term
memory!

Long-term

memory updater

=

» outputt— 1

But need some way to
update long-term
memory!

Called a "long short-term
memory” (LSTM) RNN

Remembers things longer
than vanilla RNN

» outputt

LSTM Parameters

®) & ®)
We already saw how to unrollan RNN =03 _ I\ P : ,I ?
6 & & o
Reasoned about the problem of long-term dependencies
and LSTM'’s solution
& ® & @ ®)
T [AW T T y T
a T e T AL A]
| | 7
o o e © © ©

The repeating module in an LSTM contains four interacting layers.

Let us look a bit more into the detail of LSTM and the parameters

LSTM Parameters

Ci_y

)
@
v ®)

fi =0 Wys-[hi—1,2¢] + by)

LSTM has 3 gates to protect the cell state Forget the old information

through. They are composed out of a sigmoid neural information coming in

Gates are a way to optionally let information ® because of the new relevant
net layer and a pointwise multiplication operation. E(i?]

—>®
3,

‘ T Ci = fi *Cr—1 + 4y % C}
Cy = tanh(We-[hy 1, 2] + bc)

hi—1

A

Decide what new information we're going to store in the
cell state:
1. "Input gate” layer for which values to update.
2. Tanh layer creating new candidate values

Update the old cell state
Multiply the old state by forgetting the things we
decided to forget earlier.
Then we add the new candidate values, scaled by how
much we decided to update each state value.

hi A\
D 0p = 0 (W, [he_1,21] + by) Output: filtered version of the cell state
¥ hy = o, * tanh (C)) Put the c‘ell state through tanh (to pgsh th.e values to be between —1 and 1)
hes e and multiply it by the output of the sigmoid gate, so that we only output the

[parts we decided to.

UDA_pytorch_utils.py

Let's look at UDA_get rnn _last time step outputs

Analyzing Times Series with CNNs

e Think about an image with 1 column, and where the rows index
time steps: this is a time series!

e Think about a 2D image where rows index time steps, and the
columns index features: this is a multivariate time series (feature
vector that changes over time!)

e CNNs can be used to analyze time series but inherently the size of
the filters used say how far back in time we look

e It your time series data all have the same length (same number of
time steps) and do not have long-range dependencies that require
long-term memory, CNNs can do well already!

= It you need long-term memory or time series with different
lengths, use RNNs (not the vanilla one) or transtormers

 Note: while it is possible to have a CNN take in inputs that vary in
size, we did not cover this in lecture

Probafbilities Classifier

| Softmax |

- mm m m mm momomom P

S W Em OEm OE mEEEmmm

|l Linear |

5

B TRCETTFTEREEREERRRERRERE . [CAdd&Nom J Transformer
. | F
. Transformer Encoder i 5=, Decoder
E ,_5: r
: s \:: | Add & Norm <~
: > Add £ MBI) 1k Multi-Head
: Feed A Attention
E Fon‘/\(ard E 4. } } t N x
: — 5 (J~
' " Add & Norm
: Nx L I
: —(Add & Norm J ol Masked
: Multi-Head o Multi-Head
: Attention ;! Attention
: ‘ A ’ E : \ A }
) s S HEANSE e 2
Positional Positional
Encod P & -
ncoding Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

Figure 1: The Transformer - model architecture.

Vaswani et al. “Attention is All You Need”. NeurlPS 2017.

Decoder—OnIy Transformer

PrObathh’[IeS Cl dSS |f| e r

i | Softmax |

:‘[Linear |

[Cadd & Nom Transformer
E Feed
The teed forward network used i} b Fomard Decoder
is justan MLP Tt '
1 TR S R ¥ D L %J ----- .\‘ N
Norm” refers to LayerNorm - : _J|
[Add&lNom
I REEEEEEEEEEEEEEEEEEEEE] § E Ve
PP ‘|| Multi-Head
11 TR . : Attention
Masked” just is a reference to the [T
1% v, ,
causal dependency enforced R ERRIEECRTTERRTERRRERRREE :
)) & Posrtrorral
(current time step’s output cannot Encoding
. ;. Output
depend on future time step's inputs) Embeiddmg
Outputs

(shifted right)

Figure 1: The Transformer - model architecture.

Vaswani et al. “Attention is All You Need”. NeurlPS 2017.

Decoder-Only Transtformer

l

PrObabehtIeS Cl dSS |'F| e r

i | Softmax |

. [Lnear)

-
-
-

--

-
-

-
-
-
-
-
-
-
-
“
-

“"Masked" just is a reference to the
causal dependency enforced
(current time step’s output cannot
depend on future time step’s inputs)

Tra nsformer
Decoder

C Add Je | X
4 Masked

Multi-Head
Attention

At

Positional
Encoding

Output
Embedding

T

Outputs
(shifted right)

Figure 1: The Transformer - model architecture.

Vaswani et al. “Attention is A

Il You Need”. NeurlPS 2017.

“"Pre-norm

version

' that's now

standard

11

Full Transformer

The original full transformer was used
for translating between languages

.................................. | CAdd & Norm J~
: : : Feed
: Transtormer Encoder iif] e
,_5: —
- N] [Add & Norm Je=~
—(Add &_Norm) A Multi-Head
Feed A Attention
Forward E | 7 7 7 N x
A : . [‘](_:
« +| LAdd & Norm
NX LI | I
~—>| Add & Norm] : NMasked
Multi-Head . Multi-Head
Attention . Attention
A+ 2 | At
—_— J: v,
Positional Positional
Encoding D ¢
Input Output
Embedding Embedding
Inputs Outputs

|

. | Softmax)

E[Linear |

(shifted right)

Figure 1: The Transformer - model architecture.

Vaswani et al. “Attention is All You Need”. NeurlPS 2017.

Transformer :
Decoder

Encodng — Decoder produces text
in another language
(e.g., French)

Transformer Encoder vs Transformer Decoder

In PyTorch, TransformerEncoder allows the user to specity a causal mask,
which would turn it into a transformer decoder

B RGCETLITCRTCRPEPRELEELPCRREPRE . [CAdd&Nom J Transformer :
: 1y Feed :
: Transtormer Encoder 1| o Decoder
r N
~>{ Add & Norm |
Feed : '
Forward : E N x
A : : []«:
| LAdd & Norm
V| s | e
Multi-Head . Multi-Head
Attention . Attention
—t A 4
S e S e

The only difterence is the causal masking

Meanwhile, if you use PyTorch's TransformerDecoder, it expects that you

provide it information from the encoder...which we wouldn't have if we're

using a decoder-only transformer so that's why the lecture code demo just
uses the TransformerEncoder with a causal mask...

Questions About the Lecture Demo?

Demo

